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To accommodate the growing air traffic demand, flights will need to be planned and
navigated with a much higher level of precision. The Next Generation Air Transportation
System (NextGen) stands to benefit significantly in safety and efficiency from such move-
ment of aircraft along precisely defined paths. Air Traffic Operations (ATO) relying on
such precision–the Precision Air Traffic Operations or PATO–are the foundation of high
throughput capacity envisioned for the future airports. In PATO, the preferred method is
to manage the air traffic by assigning a speed profile to each aircraft in a given fleet in a
given airspace (in practice known as speed control). In this paper, we develop an algorithm,
set in the context of a Hybrid Control System (HCS)1 model, that determines whether a
speed control solution exists for a given fleet of aircraft in a given airspace and if so, com-
putes this solution as a collective speed profile that assures separation if executed without
deviation. In this paper, uncertainties such as weather are not considered but the algo-
rithm can be modified to include uncertainties. The algorithm first computes all feasible
sequences by looking at all pair combinations of aircraft. Then the most likely sequence is
determined and the speed control solution is constructed by a backward algorithm starting
with the aircraft last out and proceeds to the first out. This computation for all sequences
can be done in parallel which helps to reduce the computation time.

Nomenclature

N The number of aircraft in the fleet
xi = xi(t) The arc length coordinate of aircraft i (at time t) along its path
X The state vector (x1, x2, . . . , xN ) of arc length coordinates

Vi = dxi

dt The speed of aircraft i
V The control vector (V1, V2, . . . , VN ) of speeds
x0i = xi(0) The initial arc length coordinate of aircraft i

xfi = xi(tf )The end arc length coordinate of aircraft i
X0 The initial state vector

(
x01, x

0
2, . . . , x

0
N

)
of arc length coordinates

sij The slope of the tangent to a trajectory in 2-dimensional coordinate state space of aircraft i and j
Laij The half-plane (6)
Uaij The half-plane (7)
A The N-dimensional attainable cone
C The N -dimensional separation-loss set
C′ The N -dimensional separation-compliant set
Qp The matrix of normal vectors of the constraint hyperplanes of the pth segment of the trajectory
Up The set of N-dimensional vector along the pth segment of the trajectory

I. Introduction

In today’s Air Traffic Operations (ATO), the FAA2 requires that each aircraft pair is separated by a distance
no smaller than the prescribed minimum (the minimum separation requirement) and each aircraft reaches
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its destination at a time as close as possible to the Scheduled Time of Arrival (STA). The responsibility
for enforcing such separation (separation assurance) today lies on the human Air Traffic Control (ATC). To
fulfill this responsibility, controllers issue clearances that not only instruct an aircraft to assume a certain
speed (in practice known as speed control), but also modify an aircraft’s flight path from the original plan
(path control). However, during the periods of peak air traffic, the task of navigating a fleet of N aircraft
to destinations and providing separation assurance is a problem whose running time can be as high as order
N !,3 as it requires a choice of an orthant a in an N -dimensional Euclidean space. Therefore, the forecast
increase in traffic demand will result in a rapid growth of workload for the ATC,4 hindering NextGen. To
afford the growing air traffic demand, flights needs to be planned and navigated with much higher level of
precision. In the NextGen aircraft move along precisely defined paths. Also, these paths are parameterized
by time so as to assure the required separation distances between pairs of aircraft, in the airspace. Therefore,
speed control is the preferred method, as path control generally entails readdressing separation assurance.

There has been recent research3,5, 6, 7, 8, 9, 10,11,12,13,14,15,16,17,18 into automating the process of computing
for each aircraft in a given fleet. A detailed flight path, parameterized by time, in a way that assures
separation for the entire fleet at all times, was aimed at designing automated decision support tools for
the ATC. The goal was to alleviate the aforementioned workload increase. This research has relied on the
modeling framework of Hybrid Control Systems (HCS).1 In this framework, the arc length coordinate of each
aircraft will be mapped to one of state space axes (for more explanation see section II). Hence, a solution
for a fleet of N aircraft, each with a precise path prescribed, is ultimately a pair X(t) and V(t), where

X(t) = (x1(t), x2(t), . . . , xN (t)) , (1)

and
V(t) = (V1(t), V2(t), . . . , VN (t)) , (2)

of time-dependent, N -dimensional vectors, where xi(t) is the arc length coordinate of aircraft i along its
prescribed path at time t, and

Vi(t) =
d

dτ
xi(τ)

∣∣∣∣
τ=t

, i = 1 . . . N.

Remark I.1. In what follows, the coordinates xi are assumed to correspond to the standard basis (1, 0, . . .),
(0, 1, 0, . . .), . . . of the Euclidean space of the appropriate dimension (N), and all projections that appear
below are orthogonal projections onto a subspace spanned by a subset of this basis. Furthermore, all matrices
that represent linear transformation in the state space refer to this basis.

The problem of finding such a solution for N aircraft in a given airspace can be defined as follow:

Problem I.1. Consider an airspace with

• a fleet of N aircraft, each assigned to a specific path to destination,

• each aircraft is subject to the feasible speed range, Vi ∈ [Vimin , Vimax ], where Vi is the speed of aircraft
i,

• the minimal required separation distances are considered to be identical between all aircraft pairs.

One seeks a speed profile Vi(t) for each aircraft, i, such that the corresponding motion X(t) of the fleet along
the assigned paths satisfies the initial condition

X(0) = X0 =


x01
·
·
·
x0N

 (3)

and exits the airspace without violating the minimum separation requirement (speed control solution).

aIn geometry, an orthant is the analogue in N -dimensional Euclidean space of a quadrant in the plane or an octant in three
dimensions. In general an orthant in N -dimensions can be considered the intersection of N mutually orthogonal half-planes.
By permutations of half-plane signs, there are 2N orthants in N -dimensional space.
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In particular, Ref.3 gives an algorithm to search for speed control solutions, but there is no guarantee of
finding a solution even if one exists. Whether or not it is found, the algorithm will exit after a number of
steps that is polynomial in the number of aircraft.

The contribution of this paper is an algorithm, defining a N -dimensional coordinate state space by using
the above HCS framework (explained below in more detail) to find a speed profile which satisfies the feasible
speed range for each aircraft i such that each aircraft flies on its preassigned path from the initial point
to the exit point without violating the minimal required separation (Problem I.1). Using the state space
(briefly introduced in section II; see Ref.3 for a detailed exposition), problem I.1 will be formulated as one
in control theory with states (1) and controls (2). The constraint of feasible speed range defines the set of
admissible controls and, consequently, defines in the state space the reachable set that turns out to be a
pointed polyhedral cone (called the attainable cone). The algorithm allows substantial parallelization, which
promises to reduce the physical run time (section III).

II. HCS model in ATM problems

In ATM problems - like Problem I.1- there are N aircraft in a given airspace. In order to model this problem,
the airspace can be modeled as a directed graph. A simple form of a directed graph is depicted in Figure 1a.
Each aircraft has been assigned to a path in this directed graph and each path has been parameterized by an
arc length coordinate, xi(t). This model captures the simultaneous positions of all N aircraft by specifying
one point in the N -dimensional coordinate space, X(t). A 2-dimensional coordinate space is depicted in
Figure 1b. The following subsections introduce some subsets of this coordinate space that will be used in
the subsequence algorithm.

A. State space coordinate

Consider two aircraft, denoted i and j, each flying its own route. Their routes, in this example chosen to be
polygonal paths for simpilicity, merge at point C. This situation is depicted in Figure 1a. The path assigned
to aircraft i consists of segments 1 and 3; the path assigned to aircraft j, of segments 2 and 3. As indicated
in the Nomenclature, the variable xi is an arc length coordinate on the path of aircraft i; the variable xj , an
arc length coordinate on the path of aircraft j. A simultaneous position of the two aircraft will be depicted
as a point (xi, xj) in the xixj-coordinate space, depicted in Figure 1b. The lines in the xixj-coordinate space
corresponding to the states in which at least one aircraft has reached the end of edge 3 are called distal edges
and are illustrated in Figure 1b. If a trajectory reaches one of the distal edges, it means the corresponding

1

2

3

i

j

C

(a) Simple merge point
of aircraft i and j
routes.

i route (xi)

j route (xj)

2

3

1 3

distal edges

(b) The state space coordinate for two air-
craft i and j.

Figure 1: The state space for two aircraft.

aircraft has left the airspace. The dimension of the state space will be reduced by one when one aircraft
leaves the airspace.
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B. Attainable cone

The feasible speed range constraint stated in problem I.1 translates, for the aircraft pair i, j, into the math-

ematical statement that the minimal and maximal slopes of
dxj

dxi
=

dxj/dt
dxi/dt

, denoted sij and sij , respectively,

are given by

sij =
Vjmin

Vimax

, (4)

sij =
Vjmax

Vimin

. (5)

The intersection of the half-planes (depicted in Figure 2) constructed by

Laij : xj − x0j ≥ sij
(
xi − x0i

)
, (6)

and
Uaij : xj − x0j ≤ sij

(
xi − x0i

)
, (7)

is called the pairwise attainable cone for aircraft pair i, j at initial state (x0i , x
0
j ) and is illustrated in Figure

3. The boundary of these two half-planes are denoted as

Huaij : xj = sij
(
xi − x0i

)
+ x0j ,

Hlaij : xj = sij
(
xi − x0i

)
+ x0j ,

xi

xj

X0
Hlaij : xj = sij

(
xi − x0i

)
+ x0j

Laij

xi

xj

X0

Huaij : xj = sij
(
xi − x0i

)
+ x0j

Uaij

Figure 2: The half-planes associated with the minimal and maximal slopes.

xi

xj

X0
Hlaij : xj = sij

(
xi − x0i

)
+ x0j

Huaij : xj = sij
(
xi − x0i

)
+ x0j

Pairwise attainable cone
(
Uaij ∩ Laij

)

Figure 3: The pairwise attainable cone set of two aircraft i and j.

Using analogous reasoning (i.e., imposing the suitable set of inequality constraints), the attainable cone
set for N aircraft at initial state X0 (N arbitrary) is defined as the set of intersection of all pairwise attainable
cones

A(X0) =

N⋂
i,j=1
i<j

(
Uaij ∩ Laij

)
. (8)
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This set, being an intersection of closed half-planes, is a closed polyhedron, and can be shown to be a pointed
cone with vertex X0. This cone can also be written as

A(X0) = {X |AX 6 B } . (9)

There are N(N−1)
2 pairwise frameworks and in each one there are two N -dimensional half-planes to define the

pairwise attainable cone set. Therefore, the matrix A is a N(N − 1) by N and the vector B has dimension
N(N − 1).

C. Separation-loss and Separation-compliant Set

The set of all states X that violate the separation requirement is called the separation-loss set. The

xi

xj

2

3

1 3

pairwise separation-loss set

Hbcij

Hucij

Hlcij

Figure 4: The separation-loss set for the aircraft pair i, j arising from a merge point.

separation-loss set for situation shown in Figure 1a–i.e., for an HCS model consisting only of the aircraft i
and j–is approximated by a open polyhedral region illustrated in Figure 4. The hyperplane Hucij is the set
of all states where the distance between aircraft j and i is equal to the minimum required separation and
aircraft j is closer to it’s distal edge. Similarly, the hyperplane Hlcij is the set of all states where the distance
between two aircraft is equal to the minimum required separation but aircraft i is closer to it’s distal edge.
In both cases, in order to keep the minimum required separation distance both aircraft must fly with the
same speed. Therefore, the slope of the projection of these two hyperplanes in ij-coordinate is equal to 1,

s =
Vj
Vi

= 1.

Hence the slope of the projection of hyperplane Hbcij which is perpendicular to projections of Hucij and
Hlcij is equal to -1. This region will be called the pairwise separation-loss set for aircraft pair i, j, where
Hbcij , Hucij and Hlcij are hyperplanes defined as follow:

Hbcij =
{
X
∣∣xj = −xi + dbcij

}
,

Hucij =
{
X
∣∣xj = xi + ducij

}
,

Hlcij =
{
X
∣∣xj = xi + dlcij

}
,

where dbcij , ducij and dlcij are appropriate constants in line equations which are boundaries of polyhedral
region, the calculation of these constants is out of scope of this paper, for more detail see ref.3

The feasible trajectory is a trajectory that does not have intersection with the interior of the separation-
loss set and the slope of the trajectory at all points must be in the range of [sij , sij ] which is called slope
condition hereafter. However, there is a region that cannot satisfy these two conditions simultaneously. This
region is called the roof set. The roof set for 2-dimensional subspace is illustrated in Figure 5. Any line from
any point in the roof set needs to have slope smaller than sij or greater than sij to avoid intersection with
the separation-loss set. Where hyperplanes Hurij and Hlrij are defined as:

Hurij =
{
X
∣∣xj = sijxi + durij

}
,

Hlrij =
{
X
∣∣xj = sijxi + dlrij

}
,
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xi

xj

2

3

1 3

Xr

separation-loss set

roof set

Hurij

Hlrij

Figure 5: The separation-loss set and the roof set between aircraft i and j in a simple merge point

where durij and dlrij are appropriate constants of line equations which are boundaries of the pairwise roof
set. The intersection of hyperplanes Hurij and Hlrij will be called roof apex and denoted Xr. Therefore, the
union of the pairwise separation-loss set and the roof set is exactly the set of states through which no feasible
trajectory passes. This set will be called the pairwise infeasible state set. The pairwise infeasible state set
is defined as the intersection (shown shaded gray in Figure 5) of the four open half-planes (individually
depicted in Figure 6).

Ucij =
{
X
∣∣xj < xi + ducij

}
,

Lcij =
{
X
∣∣xj > xi + dlcij

}
,

Urij =
{
X
∣∣xj < sijxi + durij

}
,

Lrij =
{
X
∣∣xj > sijxi + dlrij

}
.

To determine the infeasible state set for an N -dimensional state space, first the pairwise infeasible state set
needs to be computed, denoted Cij , as

Cij = Ucij ∩ Lcij ∩ Urij ∩ Lrij = {X |CijX > Dij } ,

where Cij is 4 by N matrix and Dij is N -dimensional vector. The pairwise infeasible state set Cij is an
intersection of four open half-planes, hence is an open set. The infeasible state set for N aircraft will now
be defined as the union of all pairwise infeasible state sets:

C =

N⋃
i,j=1
i<j

Cij .

Similarly, the infeasible state set for N aircraft is an open set. The separation-compliant state set is defined
as the complement of C and, in what follows, is denoted C′. Note that the separation-compliant set is a
closed set. In set-theoretic notation, we have

C′ =

N⋂
i,j=1
i<j

C′ij , (10)

where,

C′ij = {X |CijX ≯ Dij } .

D. Trajectory

A trajectory is a subset of the intersection between the attainable cone set and the separation-compliant state
set. In general, the trajectory is a curve. For simplicity in this paper, the algorithm generates a polygonal

6

D
ow

nl
oa

de
d 

by
 N

A
SA

 A
M

E
S 

R
E

SE
A

R
C

H
 C

E
N

T
E

R
 o

n 
A

ug
us

t 2
3,

 2
01

3 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

01
3-

47
81

 

 Copyright © 2013 by the American Institute of Aeronautics and Astronautics, Inc. The U.S. Government has a royalty-free license to exercise all rights under the copyright claimed herein for Governmental purposes. All other rights are reserved by the copyright owner. 



xi

xj

Ucij

(a) xj < xi + ducij .

xi

xj

Lcij

(b) xj > xi + dlcij .

xi

xj

Urij

(c) xj < sijxi + durij .

xi

xj

Lrij

(d) xj > sijxi + dlrij .

Figure 6: Three half-planes of the pairwise separation-loss set.

trajectory b. Each point on the trajectory is representing the arc length coordinate of all aircraft at time t.
As noted before, if the trajectory reaches one of distal edges then it means the corresponding aircraft has
left the airspace and the dimension of state space will reduce by one. Therefore, the intersection of all distal
edges is the point where all aircraft have left the airspace which is called distal point and denoted by Xf .

X(tf ) = Xf =


xf1
·
·
·
xfN

 (11)

In Figure 7 a trajectory for a simple 2-dimensional state space is depicted. When the trajectory reaches point
a, it means the aircraft j has left the airspace. After this point aircraft i is the only aircraft in the airspace
and the dimension of airspace reduces to one and the trajectory moves along the distal edge corresponding
to aircraft j until reaches to distal point Xf .

Hence, a trajectory must start from initial point (3) and ends at distal point (11). A trajectory that
satisfies the initial condition (3) and terminal condition (11) is said to be feasible if lies in the separation-
compliant state set and the tangent S of the trajectory at each point satisfies for all pairs i, j the slope
condition. A feasible trajectory for a simple 2-dimensional state space is depicted in Figure 7. If such a
trajectory exists, then there is a speed control solution. The algorithm introduced in Section III looks for
such a solution and generates a polygonal trajectory in the suitable N -dimensional state space coordinate.

bPiecewise linear trajectory
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xi

xj

X0

a Xf

distal point

Figure 7: Feasible Trajectory

E. Constraints

The polygonal trajectory is a 1-dimensional subspace of the N -dimensional state space. If one can define
N − 1 linearly independent equality constraints for each segment, then there is just one solution to satisfy
all constraints, otherwise there is more than one solution for that segment of the trajectory. The equality
constraints are the hyperplanes defined in preceding subsections. The constraints in each segment specify
a 1-dimensional intersection of hyperplanes which will define the current segment of the trajectory. Six
hyperplanes have been defined as boundaries of the attainable cone set (Huaij and Hlaij ), the infeasible state
set ((Hucij , Hlcij , Hurij and Hlrij ). The effect of each hyperplane will be discussed here. The algorithm will
construct the polygonal trajectory “backward”, i.e. from the terminal point to the initial point. For this
reason, the algorithm will be hereafter called the Backward Sweep Method. The slope of each segment of the
trajectory must satisfy the slope condition.

When the trajectory intersects with one of the hyperplanes Huaij or Hlaij the next segment must stay on
the intersected hyperplane in order to satisfy the slope condition. This situation is depicted for hyperplane
Huaij in Figure 8. In this figure the trajectory intersects the hyperplane Huaij at point a. The slope of
the next segment must satisfy the slope condition, sij ≤ sij ≤ sij , but the only segment that satisfies the
slope condition and lies inside the attainable cone is the one with the slope of sij which is on the hyperplane
Huaij . After point a the trajectory must stay on this hyperplane and cannot leave this hyperplane. Therefore,
hyperplanes Huaij and Hlaij will be called permanent constraints.

xi

xj

X0

Xf

asij
sijNot acceptable

Figure 8: The trajectory must stay on the hyperplane of the attainable cone after the intersection point a.

When the trajectory intersects one of hyperplanes Hucij or Hlcij , the slope of the next segment can be
in the range of sij ∈ [sij , 1] or sij ∈ [1, sij ], respectively. Therefore, the next segment of the trajectory can
either stay on the intersected hyperplane or leave it. The intersection with hyperplane Hucij is depicted in
Figure 9. The hyperplanes Hucij and Hlcij will be called temporary constraints.

The remaining two hyperplanes, Hurij and Hlrij , do not constraint the trajectory in the Backward Sweep
Method. An example of this is depicted in Figure 10. Therefore, the hyperplanes Hurij and Hlrij are not
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xi

xj

X0

Xf

asij

Figure 9: After the intersection point a, the trajectory can stay on the hyperplane Hucij or leave it with the
slope sij ≤ sij ≤ 1.

considered as constraints.

xi

xj

X0

Xf

a

sij

sij

Figure 10: The hyperplane Hurij does not impose any constraint on the trajectory.

In summary, among the six hyperplanes defined, four of them Huaij and Hlaij (boundaries of the attain-
able cone set) and Hucij and Hlcij (boundaries of the separation-loss set) are used as constraints to generate
the polygonal trajectory.

III. The Algorithm

Lemma III.1. In 2-aircraft case, if the feasible speed range of the aircraft i has overlap with the feasible
speed range of the aircraft j, Vimin < Vjmax

Vjmin < Vimax

, (12)

then, the necessary and sufficient condition for the existence of a speed control solution is that the initial
point X0 lies inside the separation-compliant state set, i.e.

X0 ∈ C′. (13)

Proof. If the initial point X0 does not lie inside the separation-compliant state set (lie inside the pairwise
infeasible state set), then no feasible trajectory can be initiated from the initial point. This situation is
depicted in Figure 11a. As mentioned in Section II.C, for the 2-aircraft case, the hyperplanes Hurij and
Hlrij are parallel to Huaij and Hlaij , respectively. The slopes of the hyperplanes Hucij and Hlcij are equal
to one. Therefore, if the initial point X0 lies inside the separation-compliant state set from equation (12)
one can conclude that at least one of the hyperplanes Hucij or Hlcij is inside the attainable cone. Therefore,
there exists at least one ray from the initial point X0 to the distal edge with no intersection with the pairwise
infeasible state set. This situation is depicted in Figures 11b and 11c.
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Note that in the N -dimensional case, the condition (13) is just a necessary condition for the existence of
a speed control solution.

In the 2-aircraft case of the state space defined in Section II, there are two possible sequences for aircraft
to exit the airspace: I) first aircraft i exit then j, II) first aircraft j exit then i.

xi

xj

X0

(a) Sample subspace when there is no
feasible speed control solution.

xi

xj

X0

(b) Having the initial point inside the
separation-compliant set is the necessary
and sufficient condition for the existence
of a solution in the two aircraft case.

xi

xj

X0

Xr

(c) If the roof apex lies inside the attain-
able cone both sequences are possible.

Figure 11: Pairwise subspace

If the roof apex lies in the attainable cone, Xr ∈ A then both sequences are feasible (see Figure 11c),
otherwise, depending on the position of the initial point with respect to the separation-loss set, one of the
two possible sequences is feasible. For instance, in Figure 11b there is one feasible sequence in which aircraft
j must exit the airspace before aircraft i. In general, for the N -dimensional state space (N > 2), there are
N ! possible sequences. Therefore, by looking at all pairwise subspaces one can find all feasible sequences.
For instance, if just one of pairwise subspaces allows one feasible sequence, i.e. in subspace (xi, xj) aircraft j
must exit the airspace before aircraft i, then all sequences that let aircraft i exit before j are infeasible and

the number of feasible sequences among all N aircraft will reduce to (N+1)!
2(N−1) .

The algorithm first will generate all the feasible sequences, then it will look for existence of a polygonal
trajectory in each feasible sequence. Therefore, after finding all the feasible sequences, searching for a feasible
trajectory in each feasible sequence can be done in parallel. This parallelism will reduce the computation
time. The polygonal trajectory is a 1-dimensional subspace of the N-dimensional feasible set. First consider
that there are N−1 linearly independent equality constraints for each segment, then there is just one solution
to satisfy all constraints. The case with more than one solution will be discussed later.
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If there are ` aircraft in the airspace, then the dimension of state space is `. Therefore, to generate the
trajectory, `− 1 constaints are needed. Each segment of the trajectory can be defined as,

X = Xp − µp+1dp+1, (14)

where Xp ∈ RN is the last point of the previous segment, dp+1 ∈ RN is the director of the segment p+1 and
µp+1 ∈ [0, λp+1] is a scalar variable in which µp+1 = 0 is associated with the starting point of the current
segment and µp+1 = λp+1 is associated with the end point. In order to have the trajectory on the ` − 1
constraints, the director of the line segment must be perpendicular to all normal vectors of `− 1 constraints.

Q`−1Up+1 = 0, (15)

where Q`−1 is a `−1 by ` matrix which rows of Q`−1 are the normal vectors and Up+1 ∈ R` is the projection
of dp+1 in the `-dimensional subspace. Equation (15) shows that the vector Up+1 must be in the null space19

of Q`−1. Q`−1 contains ` − 1 independent normal vectors so the dimension of its null space is one. Hence,
the vector Up+1 spans the null space of Q`−1. Equation (14) is a line equation. This line intersects all
hyperplanes Huaij , Hlaij , Hucij and Hlcij in `-dimensional subspace, where i, j = 1, · · · , ` and i < j. These
intersections will be called feasible intersections: if i) they lie inside the intersection of the attainable cone
set and the separation-compliance state set (A ∩ C′), ii) there exists a line segment that starts from the
intersection point, satisfies the slope condition and lies inside the A ∩ C′. The current segment ends at
µp+1 = λp+1 which is associated with the closest feasible intersection. The end point is denoted by Xp+1.

Xp+1 ∈ A ∩ C′.

Assume all N aircraft in the Problem I.1 have left the airspace. Then, the state vector is represented by
equation (11). Also assume one of the feasible sequences is:

{i, j, . . . , k,m} (16)

then aircraft m is the first one to leave the airspace and aircraft i is the last one. Note that, the likelihood of
the existence of a speed control solution in a feasible sequence (16) is higher than the other feasible sequences
if

Li > Lj > . . . > Lk > Lm,

where Li = xfi − x0i is the total arc length of the path assigned to the aircraft i. Similarly, the likelihood of
the existence of a speed control solution in feasible sequence (16) is lower than the other feasible sequences
if

Li < Lj < . . . < Lk < Lm.

Therefore, the algorithm starts from the feasible sequence with higher likelihood of the existence of a
speed control solution. The algorithm finds the trajectory by using the Backward Sweep Method. Hence, in
this method the distal point (equation (11)) is the starting point. Therefore, the first aircraft to consider is
the aircraft i. Until considering the next aircraft (aircraft j), there is one aircraft in the airspace, then the
state space is spanned by the unit vector:

d1 = ei = (0, 0, . . . , 1, . . . , 0, 0)T .

Therefore, by using the equation (14) one can define the first segment of the trajectory in the following form,

X = Xf − µ1d1, (17)

The dimension of state space will increase to 2, when aircraft j enters the airspace. In Section II, 6 lines have
been defined in order to determine the pairwise attainable cone and the pairwise infeasible state set. The
intersection of the line defined by equation (17) and 4 of these lines can be considered as constraints. An
example of 2-dimensional space is depicted in Figure 12. The intersection of the trajectory with the 4 lines
are denoted by a through d in Figure 12. The intersections a and b are not acceptable since µ1 is negative in
both points. The intersections c and d are acceptable since they are inside the intersection of the attainable
cone and the separation-compliant state set (A ∩ C′) and the correspoinding µ1’s are positive. Therefore,
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xi

xj

X0

d

b

c
a

Xf

µ1 < 0µ1 > 0

Hucij

Figure 12: State space when just aircraft i and j are in the airspace.

both points c and d are feasible but the closest one, which is point c, is taken as the end point of the first
segment of the trajectory and denoted by

X1 ∈ A ∩ C′.

At this point, the equation of the trajectory changes to

X = X1 − µ2d2, (18)

where

d2 =
[
0 ui 0 uj 0

]T
,

and the projection of d2 in 2-dimensional space is U2 =
[
ui uj

]T
, which is the vector spans the (1-

dimensional) null space of Q1:

Q1U2 = 0

Q1 =
[
ni nj

]
where

[
ni nj

]T
is the normal vector to the intersected line in R2 (i.e. line Hlcij in Figure 12). The equation

(18) defines the second segment of the trajectory. From this point the process of generating the trajectory
can be divided into two cases.

case 1) Suppose a new aircraft is adding to the airspace.
Assume the dimension of space is ` < N . In this case the dimension of space will increase by one to `+1.
Therefore, one extra constraint must be added to the previous constraints set. The previous segment
of the trajectory intersects all hyperplanes in (`+ 1)-dimensional space and ends at the closest feasible
intersection. The intersection point is the starting point for the next segment and the intersected
hyperplane is the new constraint.

case 2) Suppose no aircraft is adding to the airspace.
Assume the dimension of space is ` 6 N . Since the number of aircraft inside the airspace does not
change then the dimension of space does not change. Hence, the number of constraints is `− 1, same
as previous segment. Then one of the existing constraints needs to be replaced by the new constraint.
The previous segment of the trajectory intersects all hyperplanes in `-dimensional state space and ends
at the closest feasible intersection. The intersection point is the starting point of the next segment and
the intersected hyperplane is the new constraint.
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The process will continue until the trajectory reaches the initial point X0 or no feasible intersection can be
found.

During the process of finding the feasible trajectory some of temporary constraints become inactive, a
sample configuration is shown in Figure 13. If one removes the inactive constraints from the set of constraints,

xi

xj

X0

Hucij is an active constraint

Hucij is an inactive constraint

Figure 13: Active and inactive constraint

then the dimension of null space of Q`−1 will be more than one. Therefore, there are more than one solution
for the feasible trajectory. Multiple solutions can also occur when the constraints are not independent.
In case of multiple solutions, an optimization problem needs to look for a specific solution. The multiple
solution case will be discussed later. In this algorithm, in order to avoid the optimization problem, the
inactive constraints are kept so as to have a 1-dimensional null space.

When no new aircraft is added to the airspace -Case 2- one of the existing constraint will be replaced
by the new constraint. The best constraints to be replaced are inactive constraints. If there is no inactive
constraint then the new constraint must be replaced with an active temporary constraint. Therefore, The
existing constraints are replaced in the following priority:

a) inactive constraint,

b) active temporary constraint.

In general, the algorithm has two parts; in the first part it finds all the feasible sequences, and in the
second part it looks for the speed control solution in each feasible sequence. Finding the trajectory in each
sequence is an independent process and can be done in parallel. Therefore, the algorithm has the following
steps:

1) Find all feasible sequences

1a) Generate all pairwise subspaces and determine pairwise feasible sequences.

1b) Find all feasible sequences among N aircraft, sorted in descending order of aircraft path length.
If no feasible sequence exist then there is no speed control solution.

2) Look for a speed control solution in a feasible sequence by using the Backward Sweep Method

2a) Add one aircraft to the airspace and find the new segment of the trajectory. This segment can be
found with the method described in case 1.

2a-I) If no feasible intersection was found for the new segment, remove the added aircraft and go
to step (2b),

2a-II) If the feasible intersection exists but there is no aircraft left to add, go to step (2b),

2a-III) If the feasible intersection exists and there exist more aircraft to add, go step (2a).

2b) Find the new segment of the trajectory by using the method described in case 2. If the feasible
intersection for the new segment,

2b-I) Does not exist, then there is no speed control solution.
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2b-II) Is equal to the initial point (X0), then stop.

2b-III) Exists but if there is an airplane to add, go to step (2a), if not repeat step (2b).

In summery, the following lemma can be defined for the existence of a speed control solution for N aircraft,

Lemma III.2. In N aircraft case, the speed control solution exists if and only if there exists a feasible
sequence for all N -aircraft and a feasible trajectory for the given feasible sequence.

IV. Numerical Example

As an example a portion of LAX routes has been used as a sample airspace. In this example 28 aircraft
are flying in the airspace. The initial positions of those aircraft are shown in Figure 14. The radii of the

Figure 14: Initial positions of aircraft in LAX airspace.

circles are equal to half of the minimum required separation, and aircraft are at the center of circles. In
this simulation, the minimum required separation is 5 nmi and the speed range is [110, 250] nmi/hr for all
aircraft. Figures 15-19 are depicting the position of aircraft after every 30.5 sec. The computation time
of the algorithm for this example in a computer with 2.2 GHz, Xeon(R) processor is about 17 seconds in
MATLAB. This computation time can be reduced by using lower level languages, such as C++.

V. Multiple solution case

If one removes the inactive constraints from the set of constraints, or the ` − 1 constraints are not linearly
independent, then the dimension of null space of Q`−1 will be more than one. Therefore, there is more than
one solution for the feasible trajectory. Assume the dimension of null space of Q`−1 is M > 1. Then, the
null space of Q`−1 is spanned by M unit vectors,

E =
[
e1 e2 · · · eM

]
,

where

ei =
[
e1i e2i · · · e`i

]T
,

where ` is the number of aircraft inside the airspace. The vector U in equation (14) can be expressed as,

U =
[
u1 u2 · · · uM

]T
= α1e1 + α2e2 + · · ·+ αMeM ,

ui = α1ei1 + α2ei2 + · · ·+ αMeiM , (19)
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Figure 15: Positions of aircraft in LAX airspace at t=30.5 s.

Figure 16: Positions of aircraft in LAX airspace at t=61 s.

where αk are scalars and not all zero, k = 1, · · · ,M . The vector U define the direction and slope of the
trajectory, where the components of U must satisfy the slope condition in each pairwise subspace,

sij 6
uj
ui

6 sij , i, j = 1, · · · , ` and i < j.

to obtain a general form for α’s, substitute for ui and uj from equation (19), then

α1 (ej1 − sijei1) + α2 (ej2 − sijei2) + · · ·+ αM (ejM − sijeiM ) 6 0, (20)

α1

(
sijei1 − ej1

)
+ α2

(
sijei2 − ej2

)
+ · · ·+ αM

(
sijeiM − ejM

)
6 0. (21)

For each pairwise subspace the above two inequalities must be satisfied. Therefore, for `-dimensional space,
there are `(`− 1) inequalities which can be represented in matrix form.

Fα 6 0. (22)
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Figure 17: Positions of aircraft in LAX airspace at t=91.5 s.

Figure 18: Positions of aircraft in LAX airspace at t=122 s.

In this case an optimization problem can be defined to look for a specific solution, i.e. minimizing the
fuel consumption. Solving an optimization problem will increase the computation time.

VI. Discussion and Conclusion

The algorithm developed in Section III is searching for a feasible trajectory in all feasible sequences. There-
fore, it is guaranteed to find a speed control solution, if such a solution exists. We have shown that the
computation time is finite and can be done in parallel for each feasible sequence. The parallelism helps
make it computationally practical. By increasing the number of aircraft, the number of feasible sequences
will increase. But as it is discussed before, the likelihood of existence of a speed control solution in each
sequence depends on the order of total arc length of assigned path to aircraft in the sequence. Therefore, for
further reduction in computation time, a likelihood function can be defined for each feasible sequence and
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Figure 19: Positions of aircraft in LAX airspace at t=152.5 s.

then look for speed control solution in the sequences with the higher probability. In this paper, the effect of
uncertainties such as wind did not considered. Since, the uncertainties will affect the size of the attainable
cone set or the infeasible state set, then after considering the affects the algorithm can be used to find the
solution if it exists. Also, the feasible speed range of aircraft will change when the aircraft approaches the
terminal point, at which point the attainable cone set must be defined with more than two boundaries. This
will increase the dimension of matrix A and B in equation (9) and the number of permanent constraints in
each pairwise framework.

One extension for this algorithm is to calculate the speed control in real time. In real time, new aircraft
are adding to the airspace while some others are living the airspace. Two approaches can be considered to
find the speed control solution in the real time. If the computation time is small enough, after the arrival
of new aircraft the algorithm can be run again to find the new speed control solution for all aircraft in the
airspace. Otherwise, the algorithm needs to be modified to calculate the speed profile for the new aircraft
while the speed profiles of the existing aircraft are assume to be known.

The algorithm also can be used in Flight deck Interval Management (FIM). In flight deck operation
ATC issues an interval management clearance and flight crews manage spacing through speed adjustments
generated by onboard FIM equipment until reaching a planned termination point. The interval management
clearance issued by ATC is the minimum separation required, given the speed range of the aircraft on the
flight deck, the infeasible state set and the attainable cone set can be defined. Therefore, this algorithm can
be used to generate the aircraft speed profile.

If there is no speed control solution, then we have to use path control along with speed control. This
algorithm can be modified to find the best aircraft for path modification in order to have the minimum
changes in assigned path. The extension of the algorithm to path control is the topic for further research.
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